Formação do Universo

Universo em expansão

Em 1927, o padre e cosmólogo belga Georges Lemaître (1894-1966) derivou independentemente as equações de Friedmann a partir das equações de campo de Einstein e propôs que os desvios espectrais observados em nebulosas se deviam a expansão do universo, que por sua vez seria o resultado da "explosão" de um "átomo primordial".
Em 1929, Edwin Hubble forneceu base observacional para a teoria de Lemaitre ao medir um desvio para o vermelho no espectro ("redshift") de galáxias distantes e verificar que este era proporcional às suas distâncias.7 o que ficou conhecido como Lei de Hubble-Homason.

Formação dos primeiros átomos

A nucleossíntese foi a formação inicial dos primeiros núcleos atômicos elementares (hidrogênio e hélio). Ela ocorreu porque a atuação da Força Nuclear Forte acabou atraindo prótons e nêutrons que se comprimiram em núcleos primitivos.
Com a queda da temperatura universal, os núcleos atômicos de hidrogênio, hélio e lítio recém-formados se ligaram aos elétrons, formando assim átomos completos desses elementos.


Formação das galáxias

A teoria mais aceita é que as estruturas que observamos hoje em dia se formaram como consequência do crescimento de flutuações primordiais devido à instabilidade gravitacional. As flutuações primordiais causaram que os gases foram atraídos até áreas de material mais denso, hierarquicamente se formaron os supercúmulos, os agrupamentos galácticos, as galáxias, os cúmulos estelares e as estrelas. Uma consequência deste modelo é que a localização das galáxias indicam áreas de alta densidade do Universo primordial. Assim, a distribuição das galáxias está intimamente relacionada com a física do Universo primordial.

Formação das estrelas

Tipicamente, a maioria das estrelas se formam a partir de grandes nuvens moleculares. Quando em algum local da nuvem há uma certa densidade de moléculas massivas, essas tendem a entrar em colapso e a densidade central tende então a aumentar rapidamente, enquanto a densidade nas partes externas permanece praticamente constante1 . No momento em que a densidade central se tornar opaca a temperatura vai começar a subir e consequentemente aumentar a pressão, terminando enfim o colapso e alcançando um equilíbrio hidrostático; está formado então o núcleo estelar. Quando a estrela está nesse estágio de sua evolução ela é chamada de protoestrela.
Após isso as camadas externas continuam sendo acrescentadas ao núcleo e a temperatura continua a subir. Em um certo momento temperatura alcançará 2000 K e o hidrogênio vai se dissociar de sua forma molecular, usando-se para isso da energia de contração da protoestrela, acabando com o equilíbrio hidrostático e fazendo-a entrar em colapso novamente. O núcleo só vai se equilibrar novamente quando todo o hidrogênio dele estiver na forma atômica. Nesse estágio o corpo celeste ainda é denominado protoestrela.
A temperatura continuará a subir a medida em que mais matéria vai se unindo ao núcleo estelar; se não houver mais matéria nas proximidades a protoestrela pode nunca se tornar uma estrela. Normalmente em meados dos 4500 K na superfície da protoestrela a fotosfera já atingiu a superfície do núcleo em equilíbrio hidrostático. Inicia-se então a fusão nuclear. A partir desse momento a evolução da estrela vai definir seu tipo estelar.
Os rumos da evolução de uma estrela, normalmente dependem da quantidade de matéria presente no local em que a estrela está se formando. Os elementos químicos que farão parte da composição da estrela e a presença de uma ou mais estrelas companheiras são fatores secundários na definição do tipo estelar.

Formação dos planetas

Atualmente, o método aceito que explica a formação dos planetas é conhecido como acreção, em que os planetas começam por ser grãos de poeira orbitando a protoestrela. Através do contato direto, estes grãos juntam-se em aglomerados de poeira que podem chegar a ter 200 metros de diâmetro, que, por sua vez, colidem uns com os outros, formando corpos maiores (planetesimais) com dimensões de cerca de 10 quilómetros (Km).29 Estes, através de colisões, aumentaram, gradualmente, o seu tamanho, crescendo apenas alguns centímetros por ano, ao longo dos milhões de anos seguintes.